
Advanced Exploratory Analytics, Analytics

Model-based extrapolation between dosing regimens

Varying regimens in oncology Phase I dose-escalation trials

Sebastian Weber, Associate Director Basel, EFSPI Workshop 25th September 2018

Acknowledgements

- Burak Kürsad Günhan
- Tim Friede
- Abdelkader Seroutou

Oncology Phase I Dose-Escalation

- Disease severity mandates efficacy maximization
- Aim is to find maximum tolerated dose (MTD)
- Adaptive trial design
 - Sequential enrollment of small cohorts of 3-6 patients
 - Treatment for 1 cycle
 - Assessment of cycle 1 trial data once cycle 1 completes
 - Dose of next cohort must ensure patient safety
- Challenges for statistical approaches
 - Data sparsity
 - (Drug combinations)
 - Only consideration of a dose escalation... Dose regimens??

Everolimus Example

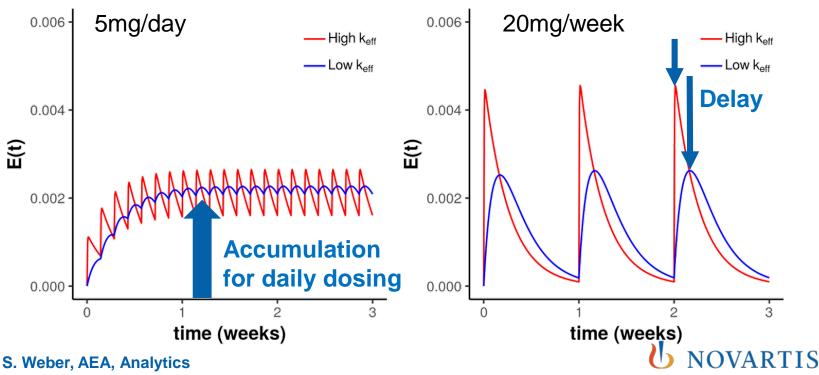
- Phase Ib dose-escalation in small-cell lung cancer Besse B, Heist RS, Papadmitrakopoulou VA, et al. A phase ib dose-escalation study of everolimus combined with cisplatin and etoposide as first-line therapy in patients with extensive-stage small-cell lung cancer. Ann Oncol. 2014
- Explored two regimens
 - Daily dosing: 2.5 mg/day, 5.0 mg/day
 - Weekly dosing: 20 mg/week, 30 mg/week
- Each regimen analyzed separately
- MTD declared for daily 2.5 mg

Dose								
Regimen	[mg/admin]	dmin] N						
daily	2.5	4	2					
daily	5.0	6	3					
weekly	20.0	5	0					
weekly	30.0	13	4					

Bayesian Logistic Regression Model (BLRM)

- Statistical model
 - Data: # of patients with DLT r_i per cohort with n_i patients at dose d_i
 - Binomial likelihood with DLT probability $\pi_i(d_i)$
 - Logit-link regression: intercept, positive slope with $\log\left(\frac{d_i}{d^*}\right)$
- Escalation with overdose control (EWOC) $P(\pi(d) \ge 0.33) < 0.25$
- Regimens out of scope
- Ad-hoc limitations
 - Need for down-weighting
 ⇔ efficiency loss
 - 2-step approach leads to one BLRM per regimen

S.	Weber,	AEA,	Analytics	
----	--------	------	------------------	--

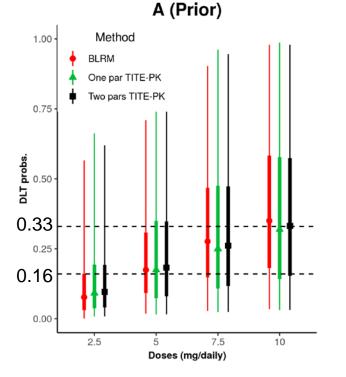

	Dose	Dose			
Regimen	[mg/admin]	[mg/day]	Ν	DLT	
daily	2.5	2.50	4	2	
daily	5.0	5.00	6	3	
weekly	20.0	20/7	5	0	
		=2.86			
weekly	30.0	30/7	13	4	
		=4.29			
U NOVARTIS					

1

5

Time to event pharmacokinetic model (TITE-PK)

- Time to first event model using an *exposure metric*
- Exposure metric based on drug *pharmacokinetics*
- Use of planned regimen and known PK parameters

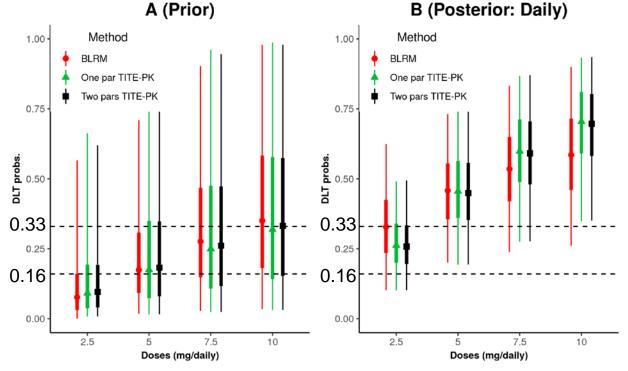

TITE-PK model Time-varying Poisson process

- Hazard at time t proportional to exposure metric E(t) $h(t) = \beta E(t)$ $H(t) = \int_{0}^{t} h(t') dt' = \beta AUC_{E}(t)$ $S(t) = P(T > t) = \exp(-H(t))$
- Follow-up until time t^* end of cycle 1
- Dosing regimen
 - Dose d
 - Frequency of dosing f
- EWOC metric for cycle 1 of a regimen $P(T \le t^* | d, f) = 1 - P(T > t^* | d, f)$ $= 1 - S(t^* | d, f)$

U NOVARTIS

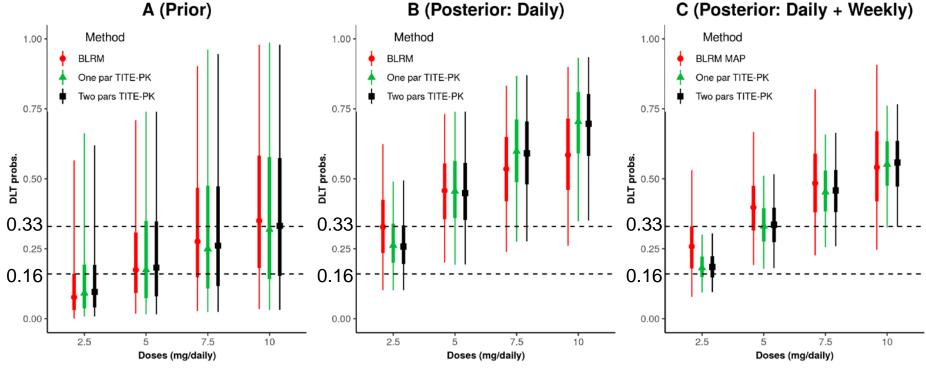
7

Everolimus Daily Regimen Reanalysis Daily->Weekly Switch


All models have matched priors

Posteriors with • Posteriors with daily data

daily+weekly data


Everolimus Daily Regimen Reanalysis Daily->Weekly Switch

- All models have matched priors
- Posteriors with
 daily data
- Posteriors with daily+weekly data

U NOVARTIS

Everolimus Daily Regimen Reanalysis Daily->Weekly Switch

- All models have matched priors
- Posteriors with daily data
- Posteriors with daily+weekly data

U NOVARTIS

Conclusions

- Model based extrapolation
 - Enables more efficient use of trial data
 - Potentially enhances available historical data (collected under different regimens)
 - Requires assumptions here: Pharmacokinetic principles
- Advantages of TITE-PK
 - No more need for ad-hoc approaches used to combine different dosing regimens easier to apply + greater statistical efficiency
 - Greater flexibility for escalation trials
 - Coherent (single-model) dose-toxicity model for multiple regimens
 - Operationally feasible

Thank you

References

- Besse B, Heist RS, Papadmitrakopoulou VA, et al. A phase ib dose-escalation study of everolimus combined with cisplatin and etoposide as first-line therapy in patients with extensive-stage small-cell lung cancer. Ann Oncol. 2014;25(2):505-511. doi:10.1093/annonc/mdt535.
- Neuenschwander B, Branson M, Gsponer T. Critical aspects of the Bayesian approach to phase I cancer trials. *Stat Med*. 2009;27(March 2008):2420-2439. doi:10.1002/sim.3230.
- Günhan BK, Weber S, Seroutou A, Friede T (2018) Guiding phase I dose-escalation trials with more than one dosing regimen. XXIXth International Biometric Conference

